martes, 8 de junio de 2010

ETAPAS DEL TRATAMIENTO

Tratamiento primario [editar]El tratamiento primario es para reducir aceites, grasas, arenas y sólidos gruesos. Este paso está enteramente hecho con maquinaria, de ahí conocido también como tratamiento mecánico.




Remoción de sólidos [editar]En el tratamiento mecánico, el afluente es filtrado en cámaras de rejas para eliminar todos los objetos grandes que son depositados en el sistema de alcantarillado, tales como trapos, barras, condones, compresas, tampones, latas, frutas, papel higiénico, etc. Éste es el usado más comúnmente mediante una pantalla rastrillada automatizada mecánicamente. Este tipo de basura se elimina porque esto puede dañar equipos sensibles en la planta de tratamiento de aguas residuales, además los tratamientos biológicos no están diseñados para tratar sólidos.



Remoción de arena [editar]Esta etapa (también conocida como escaneo o maceración) típicamente incluye un canal de arena donde la velocidad de las aguas residuales es cuidadosamente controlada para permitir que la arena y las piedras de ésta tomen partículas, pero todavía se mantiene la mayoría del material orgánico con el flujo. Este equipo es llamado colector de arena. La arena y las piedras necesitan ser quitadas a tiempo en el proceso para prevenir daño en las bombas y otros equipos en las etapas restantes del tratamiento. Algunas veces hay baños de arena (clasificador de la arena) seguido por un transportador que transporta la arena a un contenedor para la deposición. El contenido del colector de arena podría ser alimentado en el incinerador en un procesamiento de planta de fangos, pero en muchos casos la arena es enviada a un terraplén.





Tanque de sedimentación primaria en una planta rural. Tanque de sedimentación primaria en la planta de tratamiento rural [editar] Investigación y maceración [editar]El líquido libre de abrasivos es pasado a través de pantallas arregladas o rotatorias para remover material flotante y materia grande como trapos; y partículas pequeñas como chícharos y maíz. Los escaneos son colectados y podrán ser regresados a la planta de tratamiento de fangos o podrán ser dispuestos al exterior hacia campos o incineración. En la maceración, los sólidos son cortados en partículas pequeñas a través del uso de cuchillos rotatorios montados en un cilindro revolvente, es utilizado en plantas que pueden procesar esta basura en partículas. Los maceradores son, sin embargo, más caros de mantener y menos confiables que las pantallas físicas.



Sedimentación [editar]Muchas plantas tienen una etapa de sedimentación donde el agua residual se pasa a través de grandes tanques circulares o rectangulares.Estos tanques son comúnmente llamados clarificadores primarios o tanques de sedimentación primarios. Los tanques son lo suficientemente grandes, tal que los sólidos fecales pueden situarse y el material flotante como la grasa y plásticos pueden levantarse hacia la superficie y desnatarse. El propósito principal de la etapa primaria es producir generalmente un líquido homogéneo capaz de ser tratado biológicamente y unos fangos o lodos que puede ser tratado separadamente. Los tanques primarios de establecimiento se equipan generalmente con raspadores conducidos mecánicamente que llevan continuamente los fangos recogido hacia una tolva en la base del tanque donde mediante una bomba puede llevar a éste hacia otras etapas del tratamiento.



Tratamiento secundario [editar]

Tanque de sedimentación secundaria en una planta rural.El tratamiento secundario es designado para substancialmente degradar el contenido biológico de las aguas residuales que se derivan de la basura humana, basura de comida, jabones y detergentes. La mayoría de las plantas municipales e industriales trata el licor de las aguas residuales usando procesos biológicos aeróbicos. Para que sea efectivo el proceso biótico, requiere oxígeno y un substrato en el cual vivir. Hay un número de maneras en la cual esto está hecho. En todos estos métodos, las bacterias y los protozoarios consumen contaminantes orgánicos solubles biodegradables (por ejemplo: azúcares, grasas, moléculas de carbón orgánico, etc.) y unen muchas de las pocas fracciones solubles en partículas de flóculo. Los sistemas de tratamiento secundario son clasificados como película fija o crecimiento suspendido. En los sistemas fijos de película –como los filtros de roca- la biomasa crece en el medio y el agua residual pasa a través de él. En el sistema de crecimiento suspendido –como fangos activos- la biomasa está bien combinada con las aguas residuales. Típicamente, los sistemas fijos de película requieren superficies más pequeñas que para un sistema suspendido equivalente del crecimiento, sin embargo, los sistemas de crecimiento suspendido son más capaces ante choques en el cargamento biológico y provee cantidades más altas del retiro para el DBO y los sólidos suspendidos que sistemas fijados de película.









Filtros de desbaste [editar]Los filtros de desbaste son utilizados para tratar particularmente cargas orgánicas fuertes o variables, típicamente industriales, para permitirles ser tratados por procesos de tratamiento secundario. Son filtros típicamente altos, filtros circulares llenados con un filtro abierto sintético en el cual las aguas residuales son aplicadas en una cantidad relativamente alta. El diseño de los filtros permite una alta descarga hidráulica y un alto flujo de aire. En instalaciones más grandes, el aire es forzado a través del medio usando sopladores. El líquido resultante está usualmente con el rango normal para los procesos convencionales de tratamiento.



Fangos activos [editar]Las plantas de fangos activos usan una variedad de mecanismos y procesos para usar oxígeno disuelto y promover el crecimiento de organismos biológicos que remueven substancialmente materia orgánica. También puede atrapar partículas de material y puede, bajo condiciones ideales, convertir amoniaco en nitrito y nitrato, y en última instancia a gas nitrógeno.



Camas filtrantes (camas de oxidación) [editar]

Filtro oxidante en una planta rural.Se utiliza la capa filtrante de goteo utilizando plantas más viejas y plantas receptoras de cargas más variables, las camas filtrantes son utilizadas donde el licor de las aguas residuales es rociado en la superficie de una profunda cama compuesta de coke (carbón, piedra caliza o fabricada especialmente de medios plásticos). Tales medios deben tener altas superficies para soportar los biofilms que se forman. El licor es distribuido mediante unos brazos perforados rotativos que irradian de un pivote central. El licor distribuido gotea en la cama y es recogido en drenes en la base. Estos drenes también proporcionan un recurso de aire que se infiltra hacia arriba de la cama, manteniendo un medio aerobio. Las películas biológicas de bacteria, protozoarios y hongos se forman en la superficie media y se comen o reducen los contenidos orgánicos. Este biofilm es alimentado a menudo por insectos y gusanos.



Placas rotativas y espirales [editar]En algunas plantas pequeñas son usadas placas o espirales de revolvimiento lento que son parcialmente sumergidas en un licor. Se crea un flóculo biotico que proporciona el substrato requerido.



Reactor biológico de cama móvil [editar]El reactor biológico de cama móvil (MBBR, por sus siglas en inglés) asume la adición de medios inertes en vasijas de fangos activos existentes para proveer sitios activos para que se adjunte la biomasa. Esta conversión hace como resultante un sistema de crecimiento. Las ventajas de los sistemas de crecimiento adjunto son:



1) Mantener una alta densidad de población de biomasa

2) Incrementar la eficiencia del sistema sin la necesidad de incrementar la concentración del licor mezclado de sólidos (MLSS)

3) Eliminar el costo de operación de la línea de retorno de fangos activos (RAS).

P.D.:para cualquier persona que tenga español santillana 6to. Pag.118, este tipo de info les servirá.



Filtros aireados biológicos [editar]Filtros aireados (o anóxicos) biológicos (BAF) combinan la filtración con reducción biológica de carbono, nitrificación o desnitrificación. BAF incluye usualmente un reactor lleno de medios de un filtro. Los medios están en la suspensión o apoyados por una capa en el pie del filtro. El propósito doble de este medio es soportar altamente la biomasa activa que se une a él y a los sólidos suspendidos del filtro. La reducción del carbón y la conversión del amoniaco ocurre en medio aerobio y alguna vez alcanzado en un sólo reactor mientras la conversión del nitrato ocurre en una manera anóxica. BAF es también operado en flùjo alto o flujo bajo dependiendo del diseño especificado por el fabricante.



Reactores biológicos de la membrana [editar]MBR es un sistema con una barrera de membrana semipermeable o en conjunto con un proceso de fangos. Esta tecnología garantiza la remoción de todos los contaminantes suspendidos y algunos disueltos. La limitación de los sistemas MBR es directamente proporcional a la eficaz reducción de nutrientes del proceso de fangos activos. El coste de construcción y operación de MBR es usualmente más alto que el de un tratamiento de aguas residuales convencional de esta clase de filtros.



Sedimentación secundaria [editar]El paso final de la etapa secundaria del tratamiento es retirar los flóculos biológicos del material de filtro y producir agua tratada con bajos niveles de materia orgánica y materia suspendida.



Tanque de sedimentación secundaria en una planta de tratamiento rural



Tratamiento terciario [editar]El tratamiento terciario proporciona una etapa final para aumentar la calidad del efluente al estándar requerido antes de que éste sea descargado al ambiente receptor (mar, río, lago, campo, etc.) Más de un proceso terciario del tratamiento puede ser usado en una planta de tratamiento. Si la desinfección se practica siempre en el proceso final, es siempre llamada pulir el efluente.



Filtración [editar]La filtración de arena remueve gran parte de los residuos de materia suspendida. El carbón activado sobrante de la filtración remueve las toxinas residuales.



Lagunaje [editar]

Esquema de una depuradora por lagunaje.El tratamiento de lagunas proporciona el establecimiento necesario y fomenta la mejora biológica de almacenaje en charcos o lagunas artificiales. Se trata de una imitación de los procesos de autodepuración que somete un río o un lago al agua residual de forma natural. Estas lagunas son altamente aerobias y la colonización por los macrophytes nativos, especialmente cañas, se dan a menudo. Los invertebrados de alimentación del filtro pequeño tales como Daphnia y especies de Rotifera asisten grandemente al tratamiento removiendo partículas finas. El sistema de lagunaje es barato y fácil de mantener pero presenta los inconvenientes de necesitar gran cantidad de espacio y de ser poco capaz para depurar las aguas de grandes núcleos.



Tierras húmedas construidas [editar]Las tierras húmedas construidas incluyen camas de caña y un rango similar de metodologías similares que proporcionan un alto grado de mejora biológica aerobia y pueden ser utilizados a menudo en lugar del tratamiento secundario para las comunidades pequeñas, también para la fitoremediacion.



Un ejemplo es una pequeña cama de cañas (o camas de lámina) utilizada para limpiar el drenaje del lugar de los elefantes en el parque zoológico de Chester en Inglaterra.



Remoción de nutrientes [editar]Las aguas residuales poseen nutrientes pueden también contener altos niveles de nutrientes (nitrógeno y fósforo) que eso en ciertas formas puede ser tóxico para peces e invertebrados en concentraciones muy bajas (por ejemplo amoníaco) o eso puede crear condiciones insanas en el ambiente de recepción (por ejemplo: mala hierba o crecimiento de algas). Las malas hierbas y las algas pueden parecer ser una edición estética, pero las algas pueden producir las toxinas, y su muerte y consumo por las bacterias (decaimiento) pueden agotar el oxígeno en el agua y asfixiar los pesces y a otra vida acuática. Cuando se recibe una descarga de los ríos a los lagos o a los mares bajos, los nutrientes agregados pueden causar pérdidas entrópicas severas perdiendo muchos peces sensibles a la contaminacion en el agua. La retirada del nitrógeno o del fósforo de las aguas residuales se puede alcanzar mediante la precipitación química o biológica.



La remoción del nitrógeno se efectúa con la oxidación biológica del nitrógeno del amoníaco a nitrato (nitrificación que implica nitrificar bacterias tales como Nitrobacter y Nitrosomonus), y entonces mediante la reducción, el nitrato es convertido al gas nitrógeno (desnitrificación), que se lanza a la atmósfera. Estas conversiones requieren condiciones cuidadosamente controladas para permitir la formación adecuada de comunidades biológicas. Los filtros de arena, las lagunas y las camas de lámina se pueden utilizar para reducir el nitrógeno. Algunas veces, la conversión del amoníaco tóxico al nitrato solamente se refiere a veces como tratamiento terciario.



La retirada del fósforo se puede efectuar biológicamente en un proceso llamado retiro biológico realzado del fósforo. En este proceso específicamente bacteriano, llamadas Polyphosphate que acumula organismos, se enriquecen y acumulan selectivamente grandes cantidades de fósforo dentro de sus células. Cuando la biomasa enriquecida en estas bacterias se separa del agua tratada, los biosólidos bacterianos tienen un alto valor del fertilizante. La retirada del fósforo se puede alcanzar también, generalmente por la precipitación química con las sales del hierro (por ejemplo: cloruro férrico) o del aluminio (por ejemplo: alumbre). El fango químico que resulta, sin embargo, es difícil de operar, y el uso de productos químicos en el proceso del tratamiento es costoso. Aunque esto hace la operación difícil y a menudo sucia, la eliminación química del fósforo requiere una huella significativamente más pequeña del equipo que la de retiro biológico y es más fácil de operar.



Desinfección [editar]El propósito de la desinfección en el tratamiento de las aguas residuales es reducir substancialmente el número de organismos vivos en el agua que se descargará nuevamente dentro del ambiente. La efectividad de la desinfección depende de la calidad del agua que es tratada (por ejemplo: turbiedad, pH, etc.), del tipo de desinfección que es utilizada, de la dosis de desinfectante (concentración y tiempo), y de otras variables ambientales. El agua turbia será tratada con menor éxito puesto que la materia sólida puede blindar organismos, especialmente de la luz ultravioleta o si los tiempos del contacto son bajos. Generalmente, tiempos de contacto cortos, dosis bajas y altos flujos influyen en contra de una desinfección eficaz. Los métodos comunes de desinfección incluyen el ozono, la clorina, o la luz UV. La Cloramina, que se utiliza para el agua potable, no se utiliza en el tratamiento de aguas residuales debido a su persistencia.



La desinfección con cloro sigue siendo la forma más común de desinfección de las aguas residuales en Norteamérica debido a su bajo historial de costo y del largo plazo de la eficacia. Una desventaja es que la desinfección con cloro del material orgánico residual puede generar compuestos orgánicamente clorados que pueden ser carcinógenos o dañinos al ambiente. La clorina o las "cloraminas" residuales puede también ser capaces de tratar el material con cloro orgánico en el ambiente acuático natural. Además, porque la clorina residual es tóxica para especies acuáticas, el efluente tratado debe ser químicamente desclorinado, agregándose complejidad y costo del tratamiento.



La luz ultravioleta (UV) se está convirtiendo en el medio más común de la desinfección en el Reino Unido debido a las preocupaciones por los impactos de la clorina en el tratamiento de aguas residuales y en la clorinación orgánica en aguas receptoras. La radiación UV se utiliza para dañar la estructura genética de las bacterias, virus, y otros patógenos, haciéndolos incapaces de la reproducción. Las desventajas dominantes de la desinfección UV son la necesidad del mantenimiento y del reemplazo frecuentes de la lámpara y la necesidad de un efluente altamente tratado para asegurarse de que los microorganismos objetivo no están blindados de la radiación UV (es decir, cualquier sólido presente en el efluente tratado puede proteger microorganismos contra la luz UV).



El ozono O3 es generado pasando el O2 del oxígeno con un potencial de alto voltaje resultando un tercer átomo de oxígeno y que forma O3. El ozono es muy inestable y reactivo y oxida la mayoría del material orgánico con que entra en contacto, de tal manera que destruye muchos microorganismos causantes de enfermedades. El ozono se considera ser más seguro que la clorina porque, mientras que la clorina que tiene que ser almacenada en el sitio (altamente venenoso en caso de un lanzamiento accidental), el ozono es colocado según lo necesitado. La ozonización también produce pocos subproductos de la desinfección que la desinfección con cloro. Una desventaja de la desinfección del ozono es el alto costo del equipo de la generación del ozono y que la cualificación de los operadores deben ser elevada. eso es todo!!



Plantas de paquete y reactores de la hornada [editar]Se han producido las plantas del paquete y los reactores de la hornada para utilizar menos espacio, tratar la basura difícil, ocuparse de flujo intermitente o alcanzar estándares ambientales más altos, un número de diseños de las plantas de tratamiento híbridas. Tales plantas combinan a menudo todas o por lo menos dos o tres etapas principales del tratamiento en una etapa combinada. En el Reino Unido, en donde una gran cantidad de plantas de tratamiento de aguas residuales ayudan a poblaciones pequeñas, las plantas del paquete son un alternativa viable a las estructuras discretas del edificio para cada etapa de proceso.



Por ejemplo, un proceso que combina el tratamiento y el establecimiento secundarios es el reactor secuencial de la hornada (SBR). Típicamente, el fango activado se mezcla con las aguas residuales entrantes crudas, se mezcla y se airea. La mezcla que resulta, será un efluente de la alta calidad. El fango colocado es escurrido y re aireado antes de que una proporción se vuelva a los trabajos. Las plantas de SBR ahora se están desplegando en muchas partes del mundo incluyendo North Liberty, Iowa, y Llanasa, North Wales.



La desventaja de tales procesos es ese control exacto de la sincronización, el mezclarse y se requiere la aireación. Esta precisión es alcanzada generalmente por los controles de computadora ligados a muchos sensores en la planta. Un sistema tan complejo, frágil es inadecuado a los lugares en donde tales controles pueden ser no fiables, o mal mantenidos, o donde la fuente de alimentación puede ser intermitente.



Las plantas del paquete se pueden referir como el colmo cargado o punto bajo cargado. Esto refiere a la manera que se procesa la carga biológica. En altos sistemas cargados, la etapa biológica se presenta con una alta carga orgánica y el material combinado del flóculo y orgánico entonces se oxigena por algunas horas antes de ser cargada nuevamente. En el sistema cargado bajo la etapa biológica contiene una carga orgánica baja y se combina con el flóculo para un largo plazo, relativamente.

No hay comentarios:

Publicar un comentario